If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3r^2-2r-9=0
a = 3; b = -2; c = -9;
Δ = b2-4ac
Δ = -22-4·3·(-9)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-4\sqrt{7}}{2*3}=\frac{2-4\sqrt{7}}{6} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+4\sqrt{7}}{2*3}=\frac{2+4\sqrt{7}}{6} $
| |2x+15|=22 | | 6t^2+2t-30=0 | | 12x+3=2-24x | | 4x+15=25-6x | | 4-(x+2)+2(3x+4)=0 | | x/11-6=17/22 | | 9−5(x+4)=3(2−x)−1 | | r^2+10r-19=0 | | 2x-1x=6-1 | | 10-3+10x-7=5x-5+2+8 | | .25n=4 | | 4.5n=72 | | n-21.62=-5.62 | | 2x/3-5x/6=x-5 | | 2x-1=1x+6 | | y÷16=1÷48 | | X²+x²=10 | | 3.5x^2+16x-50=0 | | -2a+7=a+8 | | X^2-4x-2116=0 | | 3(6+2y/3)-2y=18 | | (x-5)+(3x-7)=x-(2-3x) | | 5y-7/3y=2 | | -15x10-(x-3)=16x+20+12 | | x+(2x+1)=2 | | (4x-5)+x=50 | | 0=12(14x-9) | | 13=(2x-14)13 | | 13x+4=8+25-4 | | 75c=10 | | 5(8x+20)=45 | | (8+w)(4w+3)=w |